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Abstract

Multi-objective optimization using genetic algorithm (GA) is carried out for the desalination of brackish and sea water using spiral wound
or tubular modules. A few sample optimization problems involving two and three objective functions are solved, both for the operation of an
existing plant (which is almost trivial), as well as, for the design of new plants (associated with a higher degree of freedom). The possible
objective functions are: maximize the permeate throughput, minimize the cost of desalination, and minimize the permeate concentration.
The operating pressure differenaeP, across the membrane is the only important decision variable fexiamvg unit. In contrast, for a
new plant,AP, the active area4, of the membrane, the membrane to be used (characterized by the permeability coefficients for salt and
water), and the type of module to be used (spiral wound/tubular, as characterized by the mass transfer coefficient on the feed-side), are
the important decision variables. Sets of non-dominated (equally good) Pareto solutions are obtained for the problems studied. The binary
coded elitist non-dominated sorting genetic algorithm (NSGA-II) is used to obtain the solutions. It is observed that for maximum throughput,
the permeabilities of both the salt and the water should be the highest for those cases studied where there is a constraint on the permeate
concentration. If one of the objective functions is to minimize the permeate concentration, the optimum permeability of salt is shifted towards
its lower limit. The membrane area is the most important decision variable in designing a spiral wound module for desalination of brackish
water as well as seawater, whergaR is the most important decision variable in designing a tubular module for the desalination of brackish
water (where the quality of the permeate is of prime importance). The results obtained using NSGA-1I are compared with those from recent,
more efficient, algorithms, namely, NSGA-II-JG and NSGA-II-aJG. The last of these techniques appears to converge most rapidly.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction the total dissolved solids (TDS) to less than about
200x 10 3kgm~3 (200mgLY). Brackish water has a
Desalination of seawater and brackish water is rou- much lower TDS (<10,00& 10-3kgm~3) than seawater
tinely used nowadays for overcoming the huge scarcity (>30,000x 10-2kg m~3). This difference inthe TDS is asso-
of potable water in different parts of the world. Desali- ciated with substantial differences in the osmotic pressures
nation involves the reduction of the concentration of associated with these operations, leading to large variations
in the operating pressure differences across the reverse osmo-
* Corresponding author. Tel.: +91 512 259 7031/127: sis (RO) membrane_. The largest desalinat_ion plant in the
fax: +91 512 259 0104. world treating brackish watet.hman, 199%is located at
E-mail address: skgupta@iitk.ac.in (S.K. Gupta). Yuma, AZ, USA. This has a capacity of 275,008 day 1. It
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Nomenclature

a permeability coefficient for water
(mh-1lbar?)

A active area of membrane én

b permeability coefficient of salt (mH)

by osmotic coefficient (EqgA2.4) and(A2.10))
(m3barkg™?)

C salt concentration (kg )

Cost  operating cost of desalination unit ($h

Cele  cost of electricity ($ kW1 h=1)

Cmain Maintenance cost of membrane ($#h—1)

Cmem capital cost of membrane ($Tﬁ h‘l)

Cpump  capital cost of the pump ($1)

dnh hydraulic diameter of channel (m)

Dag mass diffusivity of salt (A) through water (B)
(m?h~1)

fi ith objective function (Mh=1; $h~1; kg m3)

H penalty parameter defined in E8)

Lgist crowding distance

Irank rank

Jw volumetric flux of water (m ht)

Js mass flux of salt (kgm?h=1)

ks mass transfer coefficient of salt in feed sid
(mh~1)

Iehrom  length of chromosome

Isupstr  length of substring

lajc string length of jumping gene

m defined in Eq(A2.14)

n exponent for the pumping cost (E\2.13))

Ngen  generation number

Ngmax maximum number of generations

Np total number of chromosomes in the popule
tion

Dc crossover probability

PIG jumping gene probability

Pm mutation probability

P pressure, bar

Pen penalty parameter (E®))

Ow volumetric flow rate (throughput) (frh—1)

R observed rejection

Re Reynolds’ number

Sc Schmidt number

Sh Sherwood number

T temperature of the feedQ)

v velocity of water in feed channel (nTh)

Wease reference value of power for estimating

Subscript/superscript

pumping cost (Eq(A2.13)) (kW)

bulk

brackish water
desired

lower bound

p permeate

ref reference, Yuma planLohman, 199%
S salt

sw seawater

U upper bound

Greek letters

A difference

efficiency of the pump

kinematic viscosity of salt solution (fin—1)
osmotic pressure (bar)

density of seawater (kgms)

> 8 © 3

uses spiral wound cellulose acetate membranes to treat raw
water having 310& 10-3kgm~2 TDS and produces per-
meate water having a TDS less than 20003 kg m3. The
largest desalination plant in the world processing seawater
(Ayyash, 1993 operates in Jeddah, Saudi Arabia. This has a
capacity of 56,800 fday ! and treats water having a TDS

of approximately 44,008 103 kg m3.

RO has several advantages over other desalination pro-
cesses such as distillation, evaporation and electro-dialysis
(Ho & Sirkar, 1992. The main advantages of RO over other
desalination processes are its simple design, lower mainte-
nance costs, easier de-bottlenecking, simultaneous removal
of both organic and inorganic impurities, low discharge in
the purge stream, and energy savings. RO is a rate-governed
pressure-driven process. The solvent flux depends upon the
applied pressure difference, trans-membrane osmotic pres-
sure difference, concentration of feed, permeability coeffi-
cients of salt and water, and the extent of concentration polar-
ization. The flux increases (at the expense of high concentra-
tion polarization) with an increase in the operating pressure
difference and permeability coefficients, and decreases with
an increase in the salt concentration.

Rigorous optimal design (or operation) of RO modules
will help in reducing their cost. Attempts have been made
to obtain optimal designs of RO units considering cost as
the single objective functionWiley, Fell and Fane (1985)
have carried out the optimal design of membrane modules
for brackish water desalination using tResenbrock (1960)
hill climb method without constraints, with Palmerdimer,
1969 axis rotation method. Sequential quadratic program-
ming (SQP;Gill, Murray, & Wright, 1991 has been used
by Maskan, Wiley, Johnston, and Clements (20@D¥ind
optimal networks of reverse osmosis modules. These studies
involve the optimization of only a single objective function,
which may, attimes, be taken as a weighted-average of several
conflicting objective functions. The assignment of values of
the weighting factors is subject to considerable controversy.
Like most problems, the design of RO modules is also asso-
ciated with several non-commensurate, objective functions
that need to be optimized simultaneously in the presence of a
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few constraints. Such problems are best handled using multi-then mapped into real numbers for use in model equations).
objective optimization (MOO) techniques. In such problems, This is an unavoidable compromise and causes problems
a set of several equally good (non-dominated) optimal solu- (Deb, 200}, e.g., it slows down the computing speed and,
tions is often obtained (instead of a single optimal point), at times, renders convergence impossible. Modifications
called a Pareto set. The basic advantage of MOO formula- (e.g., real coded GAs, the jumping gene adaptation, etc.)
tions is that the decision-maker is not confined to look at are becoming available but each technique has its own
only a single mathematically optimal solution (usually that limitations.
involving the minimum cost), but he/she can examine asetof  Several workers have extended SGA to solve multi-
efficient solutions using ajudgment of the trade-offsinvolved, objective optimization problems. Any of these techniques,
refining his/her final decisiomMavrotas & Diakoulaki, 1998 reviewed recently bydeb (2001)and Coello Coello, Veld-
Deb, 200). Indeed, Pareto sets are becoming an ‘increas- huizen and Lamont (2002¢an be used to obtain the Pareto
ingly effective way to determine the necessary trade-offs fronts. A popular algorithm for such problems is the non-
between conflicting objective functions’ (D.E. Goldberg in dominated sorting genetic algorithm (NSGA), developed
Deb, 200). The use of a single objective function which is by Deb and coworkersDeb, 200). Two versions of this
a weighted-average of several objectives also has the drawtechnique are available, NSGA-E(inivas & Deb, 199p
back that certain optimal solutions may be lost since they may and NSGA-II Oeb, Pratap, Agarwal, & Meyarivan, 2002
never be explored, particularly when the non-convexity of the Bhaskar, Ray, and Gupta (200t3ve reviewed the variety of
objective function gives rise to a duality gaBdicoechea, multi-objective optimization problems in chemical engineer-
Hansen, & Duckstein, 1982Unfortunately, there isno study ing that have been solved in the last decade using NSGA-I
on the optimal design of RO modules in the literature using (as well as the earlier optimization studies using traditional
multiple objective functions, though a parallel stuc§uén, techniques). NSGA-Ilintroduces the concept of elitighef,
Aatmeeyata, Gupta, & Ray, 20p0n beer dialysis (mini- 2001 and has been applied recently to solve two highly
mizing the alcohol content of beer to give low-alcohol beer, computationally intensive problems in chemical engineer-
while maximizing the taste chemicals in the product) has ing, namely, the multi-objective optimization of an industrial
been reported. Optimal RO design in desalination involves fluidized-bed catalytic cracker unit (FCCWHasat, Kunzru,
the selection of membrane material, module geometry (viz., Saraf, & Gupta, 2002and the unsteady operation of a steam
plate and frame, tubular, spiral wound, or hollow-fiber), mem- reformer Nandasana, Ray, & Gupta, 200&n important
brane area, quality of product, solvent recovery (i.e., water), feature of NSGA-II is that the best members are selected
operating pressure difference across the membrane, and th&rom a combined pool of parents and daughters (generated
throughput Bhattacharyya, Williams, Ray, & McCray, 1992 by crossover and mutation of the parents), and these become
Parekh, 1988 One should be able to select optimal mod- the parents for the next generation. Elitism reduces the diver-
ule parameters that provide the highest possible throughputsity of the gene pool, but offers several advantagasb(
(first objective function) while simultaneously minimizing 2001). Kasat and Gupta (2003)nspired by the concept of
the cost of desalination (second objective function). These arejumping genes (JG or transposolkKlintock, 1987; Stryer,
conflicting (and non-commensurate) requirements. Clearly, 2000 in biology, developed the jumping gene (JG) opera-
desalination through RO provides an excellent opportunity tor for use with SGA/NSGA. This macro—-macro mutation
for multi-objective optimization studies. operation in the binary-coded NSGA-II-JG speeds up the
Over the last few years, scientists, engineers and econo-optimization of FCCUs by almost an eight-fold factor, and
mists have used Al-based evolutionary techniques, particu-provides thezlobal optimal Pareto front for the test problem,
larly, genetic algorithms (GADeb, 1995; Goldberg, 1989; ZDT4 (Deb, 2001 Zitzler, Deb, & Thiele, 2009 which could
Holland, 1979, extensively to solve optimization problems not be solved satisfactorily using the binary-coded NSGA-
involving single objective functions. This basic algorithm, 1. The JG operator helps improve the diversity of the gene
simple GA or SGA @Goldberg, 198% offers advantages pool and, thus, counteracts the negative effect of elitism.
(Deb, 2001; Holland, 197%%ver more traditional optimiza- A further adaptation of NSGA-11-JG has been presented by
tion approaches (e.g., several search techniques, Pontryagin'&uria, Verma, Mehrotra, and Gupta, 2005his is referred
principle, SQP, etc.), in some cases. Moreover, it has theto as NSGA-II-mJG (modified JG). This algorithm has been
advantage that it does not require good initial guesses forfound to speed up the convergence to the global optimal solu-
the values of the ‘decision variables’. It uses a population of tions for problems involving networks, as for example, froth
several points simultaneously along with probabilistic oper- flotation circuits Guria et al., 200bfor mineral processing.
ators, viz., reproduction, crossover and mutation, inspired More recentlyBhat, Saraf, and Gupta (200f)yther adapted
by natural genetics. In addition, SGA has the advantage thatthis conceptand proposed NSGA-11-aJG (adapted JG), which
it uses only the values of the objective functions and not any could solve ZDT4 even more efficiently. This adaptation has
derivatives, as required by gradient search techniques. In thebeen applied successfully Byrosla, Saraf, and Gupta (2005)
early algorithms, binary coding was used for representing for the multi-objective optimization of fuel oil blending oper-
the continuous decision variables, i.e., these variables wereations. Details of NSGA-II-JG as well as NSGA-11-aJG are
represented/coded as a series (string) of binary numbers (andjiven inAppendix A
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The present work involves the simulation of the desali-
nation plant Lohman, 199%at Yuma, followed by the for-
mulation and solution of a few multi-objective optimization
problems for desalination using RO modules. The binary
coded NSGA-II Deb, 2001; Deb et al., 2092s used. The
results are then compared with those obtained with NSGA-
11-JG and NSGA-II-aJG so as to study the efficiency of these
algorithms. The optimization is carried out both at tper-
ating stage (Lohman, 1994 optimization of the operating
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hollow-fiber, and tubular) using the correlations summarized
in Appendix B The throughputQy, also depends on one
operating condition: the pressure differenc& P, across the
membrane. The solute concentratioR, in the feed and the
temperaturel, of operation, are usually specified (constants).
Eqg. (1a) is an implicit nonlinear algebraic equation that
can easily be solved numerically to givg and Q for a
set of values ofCy, T, A, a, b, ks and AP, b, can be esti-
mated using EqqA2.17) and (A2.18). The secant method

conditions in an existing unit) as well as at the design stage (Ray & Gupta, 200%is used to solve this equation. This

(optimization of a new plant), to illustrate the variety of
optimization problems that can be solved. The optimal solu-
tions of the first problem are also compared with the actual
operating point of the existing uniLéhman, 1993 The

method requires lower and upper bounds (estimateg), of

as well as two initial guesses of this root. The value€pf

and the cost can then be evaluated using Eqgs. (1b) and (1c¢),
respectively.

methodology is quite general and can be used for other plants

as well. It may be mentioned that this is the first application
of the multi-objective elitist NSGA-II with the jumping gene
adaptations in the area of membrane separation processes.

2. Formulation

2.1. Model of the reverse osmosis (RO) process

2.2. Multi-objective optimization

The plant at Yuma, AZ, USA Lchman, 199% uses
a spiral wound module and treats brackish water. The
parameters characterizing this unit first need to be esti-
mated (‘tuned’). This is done using the following available
information ~ (ohman, 199% A=3.93072x 10° m?;
Qw=275,000mMday 1=11,458nih~1; AP=27.6bar;
Cp=3.1kgn13; observed rejection=97%;,=0.2 kg nr3

Various mathematical models are available that describeand7=25°C. The exact value dfs depends on the geomet-
the local behavior and performance of the RO process. Theric parameters of the element (i.e., the number of leaves,
transport through RO membranes is well described by thethe thickness of spacers, the porosity of the feed spacer

widely accepted solution diffusion modélqnsdale, Merten,

& Riley, 1965 Rautenbach, 1986oltanieh & Gill, 198).

The detailed equations (for isothermal operation) are given
in Appendix B The permeate fluy,, (=Qw/A), the permeate
quality, Cp, and the cost, Cost, the three important variables
that are used as objectives in this study, are given by

bCpexp(w/ ks)
Jw + bexp(w/ ks)

)+
The variables in Eq1) are defined in the Nomenclature. The
volumetric flow rateQ,y, of the permeate can be expressed in
terms of fourdesign variables: the ared, of the membrane,
the permeability coefficienty, of water, the permeability
coefficient,b, of the salt, and the feed-side liquid film mass
transfer coefficienks (Brian, 1965, 1968Kimura & Sourira-
jan, 1968 Sherwood, Brian, Fisher, & Dresner, 19@&irkar,
Dang, & Rao 198 The values oks depend upon the hydro-
dynamics on the feed sid®bya & Taniguchi, 19750hya,
Nakajima, Takagi, Kagawa, & Negishi, 19Rerry, Green,

& Malony, 1997 Rao & Sirkar, 1978 Shock & Miquel,
1987 Stanojevic, Lazarevic, & Radic, 2003 aniguchi,
1978 Taniguchi & Kimura, 2005 Taniguchi, Kurihara, &
Kimura, 2001 Wiley et al., 1985%, and may be estimated for
different RO modules (e.g., plate and frame, spiral wound,

JWIG |:AP—bj-[ (Cb—
B bCp
T b+ Jwexpl=Jw/ks)

Cost= CmemA + CmainA + Cpump(

) expUw/ ks)}

Cp

OwAP
Whase

CeleQwA P
n

and the membrane thickness) and the physical properties
(mainly, density, kinematic viscosity and mass diffusivity)
of the salt solution, and is estimated using E42.9).
Details of different types of spiral wound modules are given
by Shock and Miquel (1987)We have used values corre-

@)
(b) @)

(©

sponding to a FilmTec FT 30 spiral wound modu&hck

& Miquel, 1987 in the present study. The ‘tuned’ values
of the two unknown parameters,and b, are obtained by
curve-fitting the operating data, as 1840 3mbarth-1

and 5.04x 10-*mh~1, respectively. A simple two-objective
optimization problem for the (operating) plant at Yuma
(referred to awperating-stage optimization) is first solved
(Problem 1). The optimal value of the single decision vari-
able,AP, is to be obtained. Since the permeabiliteandb,
depend primarily on the membrane, and since the latter is the
same for all values oA P, the tuned values of these parame-
ters are used. Thus, for this problem, value€gfb,, A, a,

b, T, and the module are specified. Two objective functions
are used: maximization of the permeate flow ra@g, and
minimization of theCosz. The permeate concentratiaf, is
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Table 1
Details of the several optimization problems studied
Problem no. 1 2 3 4 5
Module Spiral wound (FilmTec FT30) Spiral wound Tubular module Spiral wound Tubular module
(FilmTec FT30) (PCI) (FilmTec (PCI)
FT30)
ks (mh1) Eq.(A2.9) (Shock & Miquel, Eq.(A2.9) (Shock & Egs.(A2.15)and Eqg.(A2.9) Egs.(A2.15)and
1987 Miquel, 1987 (A2.16) (Wiley (Shock & (A2.16) (Wiley
etal., 198% Miquel, 1987 etal., 198%
Feed Brackish water Brackish water Brackish water Sea water Brackish Water
Operating/design Operating (Yuma) Design Design Design Design
Cp (kg m3) 3.1 (Lohman, 1994 3.1 (Lohman, 199% 3.1 (Lohman, 1994 35.0 3.1 Lohman, 1994
by (mdbarkg™1) 0.789 0.789 0.789 0.78% 0.789
Values (existing) or
bounds (new)
AP (bar) 10-50 10-50 10-50 75-250 10-50
10754 (m?)2 3.93072 [Lohman, 199% 1.0-4.0 2.0-4.0 1.0-4.0 2.0-4.0
10% (m®*m~—2bar1h-1) 1.8 (Shock & Miquel, 198¥ 0.5-5.0 0.2-1.0 0.5-5.0 0.2-1.0
10 (m3m=—2h-1) 5.04 Shock & Miquel, 1987 0.1-1.0 0.08-0.3 0.1-1.0 0.08-0.3
Cp.o° (kgm3) 0.2 0.2 0.2 - -

a10%=1.8 represents=1.8x 1073, etc.
b Calculated from EqgA2.17)and(A2.18).
¢ Cp,dis used as an objective function in Problem 5 (and not used as a constraint in Problem 4).

constrained to lie below a desired vald®,q. This problem,

(ks). The membrane permeability coefficientsand b, are

relevant to the operation of the existing plant at Yuma, can related to the thickness of the membrane and its properties,

be written mathematically, as:

Problem 1. Yuma plant; specifie@y, b;,A,a,b, T, FilimTec

namely, the diffusivities of salt and water in the membrane,
the partition coefficient of the solute in the membrane, the
feed temperature and, the nature of the concentration polar-

FT 30 spiral wound module

ization, and can be considered as decision variables directly.

Ow Aisthe membrane area and can vary continuoistiepends
Max f1(AP) = €] onthe hydrodynamics associated with the membrane module,
é"gg; and can be estimated using the correlatiofgipendix Bfor
Min fo(AP) = (b) any desired module. Two, two-objective optimization prob-
Costet lems are being studied here using two different modules (so
Subjectto(4.) : ) that the results can be compared), namely, the FiimTec FT 30

Model equations (Appendix2) (c)
Bounds: AP. <AP<APY (d)
Constraint: Cp < Cpa (€)

tubular module\Viley et al., 198%:

spiral wound module§hock & Miquel, 1987, and the PCI

Problems 2 and 3. (design stage; specifigd,, module,T):

INEQ.(2), Owrefand Cosks(=11,458 i h~1 and $2904 h1, Ow

respectively), estimates for the currently operating Yuma Max fi(AP, A, a, b) = (@)

plant using Eq(1), are used to normalize the two objective C(V)V’Srff

functions,AP_ andAPY are the lower and upper bounds on  Min f2(AP, A, a, b) = Coster (b)
e

AP (values given inable ) andCp qis taken as 0.2 kg . )
Eq. (A2.9) is used to estimatés (for any Qy), while the Subjectto (d.) :

Cost is given only by the second (constant for@ll, since Model equations (AppendixB) (c)
A is constant) and fourth terms of the right hand side of Eq. Bounds: AP, < AP < APY,
(1c) (since the remaining two terms are already ‘sunk’ for
an existing/operating plant; see discussiofppendix B).

It may be noted that the normalization constant, (st
evaluated using all four terms in Eq. (1¢) (this is unimportant
since Costs is a constant anyway).

a <a<aY,

Constraint: Cp < Cpda (€)

®3)

AL <A< AY,
bu<b<bY (d)

The values of the normalization constamg,ref and Cosky,

We could also study the optimization of desalination units
under more flexiblelesign conditions (for new units). The
decision variables, then, are not oy, but also the mem-
brane parameters, namelya, b and, the membrane module

are taken to be the same as in Problem 1 (since these are
constants anyway; this does not matter, as discussed earlier).
Table 1gives the details. Problem 4 is also described by Eq.
(3), but corresponds to the desalinationsed water using a
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Table 2

Computational parameters used for Problems 1-5

Problem no. 1 2 3 4 5 4(JG) 4(aJG)
Ngmax 500 1000 1000 1000 10000 1000 1000
Np 100 100 100 100 100 100 100
Isubstr 32 32 32 32 32 32 32
lchrom 32 128 128 128 128 128 128
Pe 0.90 099 098 090 080 098 098
Pm 0.01 0001 Q01 002 0015 Q001 Q001
PIG - - - - - 080 080
lase - - - - - - 12
Random seed numiger 0.765 Q765 Q765 Q765 Q765 Q765 Q765
H 100 10° 10° - - - -

a8 Random numbers are generated using¢heth (1997)portable subtractive pseudo-random number generator.

FilmTec FT30 spiral-wound module. Because the salt con- errors. Several other standard tests, describe€dsat et al.

centration in sea water is high, the constraintgris omitted

(2002)were also tried. The best values of the computational

for this problem. In Problems 2—4, all four terms on the right parameters were then obtained for the different problems.
hand side of Eq. (1c) are used to estimate the Cost (see disThese are given ifiable 2

cussion inAppendix B.

The constraint ol in Problems 1-3 (Egs. (2e) and (3e))
is taken care of using a penalty function approdably, 1995,
2001). We add (for minimization of an objective function) or
subtract (for maximization) a penalty, Pen, given by

Cp

s ()

to both the objective functions (in Eq&) and(3)). In Eq.(4),

(4)

In Problem 1, there is only one degree of freedom (a
selected value of, determines the complete solution) and so
the solution of Eq(2) can be obtained analytically. Itis found
that asAP increasesQ,, increases and the Cost goes down,
a characteristic of a Pareto set. This problem is a relatively
trivial one and so detailed results are not being presented
here (but can be supplied on request), and this problem is not
pursued further.

Problem 2 is a more interesting, design-stage multi-

the penalty, Pen, is taken to be a very large number (comparecdbjective optimization problem, involving more than a single
to the values of the two objective functions) whenever the degree of freedom. Pareto sets are obtained, as shown in

value of Cy, is aboveCp g, but Pen is zero whe@y, is below
Cp,d (Deb, 1995, 2001 Table 2gives the values off used.

Fig. la. The CPU time taken for this problem (as well as
all others, using any of the adaptations of NSGA-II) for 1000

Its value is large enough so that the solutions do not changegenerations, and using 100 chromosomes is 1 min (on a Pen-

with a further increase df.

The NSGA-II Kasat et al., 2002 NSGA-II-JG (Kasat
& Gupta, 2003 and NSGA-11-aJG Bhat et al., 200bcodes
available to us maximizell the objective functions. A pop-
ular transformation for an objective functighthat has to be
minimized, to one involving the fithess functiah, that has
to be maximized, is given by

1
F=———
1+ f

This transformation does not alter the optimal solutidyeiy,
1995, 2001

(%)

3. Results and discussion

The NSGA-II computer code was tested on a few test

problems Deb, 200} to make sure that it was free of errors.
Problem 1 Table J was run with a single chromosome using
AP_=APY =27.6bar. The following optimal values were
obtained:Qy = 11458.0 Mh~1 and Cost=$2904.0H, the

tium IV, 1.7 GHz, 256 MB RAM). The mean value of the
crowding distancd; gist (See Step 3c iAppendix A), as well

as the standard deviation of these values, in any generation,
can be used to get an idea of the degree of convergence of
the Pareto set. Details of this method are describé<hsat

and Gupta (2003Alternatively, an eye estimate can be used
to get an idea of when the Pareto set has stopped changing
(converged) from generation to generation, and if the ‘spread’
of the points in the set are near-uniform (the standard devia-
tion of J; gist can be used for this). The two approaches give
nearly similar resultsFig. 1d and e show that the optimal
module must have the maximum permissible permeability
coefficients ¢ and b) for the FilmTec FT30 spiral wound
membrane. This is not surprising. What is interesting is that
the increase i@y, is first achieved by an increase in the value
of membrane ared, to its maximum permissible value (with
AP being constant at an intermediate value of about 33 bar).
Thereafter,Qw and the Cost both increase because of the
increase iMAP (with the membrane ared, being constant

at its maximum specified value). This indicates tlgt is
more sensitive td than toAP. It may be mentioned that the

same as actually used (simulation values) in the plant. This constraint onCy in Problem 2 can be replaced by an addi-
confirms that the code finally used for optimization is free of tional term in the Cost that accounts for the decrease in the
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value of the permeate concentration when its specification vations fromFig. 1 (for the spiral wound module). In the case
is violated. This, and several other interesting optimization of the PCI module, the increasedy is first achieved by an
problems, can be solved but are not presented since the aimincrease ofA P to its maximum possible value (with the mem-
is to present results of only a few simple problems. brane area being constant at its minimum specified value).
Fig. 2 shows results for the design-stage two-objective Thereafter,Q,, and Cost both increase with an increase in
optimization problem for the desalination of brackish water the membrane area (with thieP being constant at its upper
using a different module, namely the PCI tubular module. limit). This indicates thaQ,, is more sensitive ta\ P than to
Fig. 2a shows the Pareto sd¥ig. 2d and e show that the A for this module. The contrast in the behaviors of the results
optimal values of the permeabilities of water and salt must for the two modules is clearly brought outfigs. 1 and 2
have the maximum possible values. This is similar to obser- The value ofC, remains almost constant afterP attains
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Fig. 5. Optimal Pareto solutions for Problem 4 using NSGA-Il, NSGA-II-JG and NSGA-II-aJG (results for NSGA-II-JG and NSGA-II-aJG are displaced
upwards by 10,000 and 20,000 $h respectively, on the ordinate so that the plots can be easily compared).
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Fig. 5. (Continued).

its maximum value. This is consistent with intuitive expec- encountered. However, one can easily inferthe optimal Pareto
tations. A small amount of scatter is observed in the optimal solution from the results generated. One way of eliminating
values of AP, A, a andb in Figs. 1 and 2lt is clear that the scatter is to express the decision variables as low-order
differences in these four decision variables compensate forpolynomials Gareen & Gupta, 1995and obtain optimal val-
each other, and do not affect the Pareto set much. This is aues of the coefficients used. These would giver-optimal
characteristic of problems associated with several degrees ofolutions that are more useful. Itis interesting to observe from
freedom, and such insensitivity of the Pareto set to scatterFigs. 1 and 2hat spiral wound modules give higher through-
in a few decision variables has been encountered earlier inputs than tubular ones (for similar values of the operating
real-life studiesBhaskar et al., 20Q(Bareen & Gupta, 1995  variables), of course at higher costs.

Tarafder, Rangaiah, & Ray, 2003t is known that GA does Fig. 3 presents the Pareto set for the design-stage, two-
not guarantee optimality of the final solutiori3gb, 200} objective optimization of aea water desalination unit using
and a few sub-optimal points/solutions are almost always the FilmTec FT 30 spiral wound module (Problenidble ).
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Fig. 5. (Continued).

Here, the bounds of the membrane permeability coefficientsthe two cases (Problems 2 and 4, involving different ranges for
of water and salt (i.eq andb) of Problem 2 are used, but  AP) for treating brackish water and sea water, respectively,
much higher ranges &t P are imposed for obvious reasons. using the FilmTec FT 30 spiral wound membrane is to be
In this caseQy, increases initially because of the increase in noted, and contrasted to the results for the PCI tubular module
both the membrane area, as well asAP. After the maxi- (Problem 3).

mum area of the membrane is attained, a further increase in  The occurrence of a minimum i€, in Problem 3

QOw is obtained due to the increaseAP. Small amounts of  (Fig. 2) suggests that we can take the minimizationCaf
scatter in the decision variables, maintyP, A, a andb is as a third objective function. We, therefore, solve the fol-
observed, but the final Pareto set is insensitive to these vari-lowing three-objective optimization problem (at the design
ations. The qualitative similarity of the optimal solutions for stage):
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Problem 5. (design stage; specifigd,, 7, PCl module):

Max f1 (AP, A, a,b) = Qu (a)
w, ref
Min f> (AP, A, a,b) = C%Zi; (b)
Min fg(AP,A,Cl, b) = Cp (C) (6)
Subjectto(g.) :
Model equations (Appendix B) (d)
Bounds: AP < AP < APY, AL <A< AY,
a<a<a’¥, b<b=<bY (e)

The Costis estimated for Problem 5 using all four terms on the
right in Eq. (1c). The reference values @f; et and Costy,
are the same as in Problem 1.

Fig. 4shows the results of Problem 5. The optimal points
in Fig. 4a and b, together, comprise a three-dimensional
Paretosurface. A 3D plot involving the objective functions
is shown inFig. 4g. Since the cost increases (worsens)
(andCp increases (worsens), albeit slightly)@g increases
(improves) over the entire range of the latter, the optimal
solution has the characteristics of a Pareto set. In the 3D plot,
some peaks are observed because of the outli€igida and
b, but a general increase is observed from the d@ywlow
Cp—low Cost end to the higl@,—high Cp,—high Cost end.
This problem is, clearly, more meaningful. A decision maker
can be provided these results, and may be asked to select
an appropriate ‘preferred’ solution. The results of the three-
objective Problem 5 are also compared with those of the
two-objective Problem 3 iRig. 4. Itis seen that the degree of
scatter increases with the introduction of the third objective
function to Problem 3. The optimal values@f for Problem
5 are always lower than those obtained in Problem 3 because
this variable is being minimized (Eq. (6¢)). This forces the
membrane permeability coefficient of the sajtto take on
its lowest value Fig. 4e), while a shifts to its upper limit
(Fig. 4d) (as compared with the two-objective problem with
the constraint on the permeate concentration (Problem 3)).
Other optimal parameters for the three-objective problem,
viz., AP, a andA, vary withQy, (Fig. 4c, d and f) almostin a
similar manner as compared to the two-objective problem.

Two recent improvements of NSGA-IDgb, 2001; Deb et
al., 2003, namely, NSGA-II-JG Kasat & Gupta, 2008and
NSGA-II-aJG Bhat et al., 200f have been used to solve one
of the problems (Problem 4) to see if the jumping gene (JG)
adaptations provide any advantage. The best values of the
computational parameters have been obtained for all these
techniques, and are listed Table 2 Fig. 5shows the devel-
opment of the Pareto set over the generations using the three
codes (the values of the cost for NSGA-II-JG and NSGA-II-
aJG have been increased by 10,000 and 20,000 $éspec-
tively, to displace their plots vertically, so that they can be
compared easily), whil@able 3gives numerical values at a
few generations. It is observed frdfig. 5as well asTable 3
that the ‘range’ of the Pareto set (minimum and maximum

Table 3

Comparison of the characteristics of the Pareto solutions obtained from the three techniques (Problem 4)

Generation NSGA-II

NSGA-II-JG  NSGA-II-lJG  NSGA-II-JG  NSGA-II-JG NSGA-II-aJG NSGA-II-aJG NSGA-II-aJG NSGA-II-aJG

NSGA-II

NSGA-II

NSGA-II

mean offi gist  S.D. ofI; gist

rangé from  range to mean ofl; gist S.D. offigist range from range to mean off gist S.D. offigist  range from range to
98671
57952

48177
102468

no.

1.4926
1.2159
1.0969
1.0202
1.0708

1.3219
0.9461
0.6465
0.6479
0.6726

73049.41

750
1088
1092

888

3003.17

1.4925
1.4814
1.0552
1.0575
1.1067
1.1120
1.1274
1.1320

1.1310

1.3219
1.0611
0.6374
0.6591
0.7074
0.7250
0.7286
0.7284

75788.65
0.7309

10719
1012
1438
583
1188
583

1.4925
1.1361
1.0412
1.0592
1.1051
1.1176
1.1254
1.1211
1.1234
1.1387
1.1255

1.1519

1.3218
0.8682
0.6376
0.6702
0.7008
0.7121
0.7151
0.7164
0.7211
0.7201
0.7249

0.7312

70344.35

81857.83

86334.10

85304.78

88141.74

75420.80

87069.66

92471.25
95147.50

88040.48

82648.16

10

88375.73

94172.77

29941
29927
28437
29127
27633
121687

20
30
40
50
60
70
80
90
100
500
1000

1.0854
1.1062
1.1118
1.1348

1.1344

0.6966
0.7088
0.7232
0.7280

49@ 92996.29
12718
0.7301

508
10589

82762.29

93857.76

92604.98

92911.11

299

93715.16

95966.83

95409.55
96586.80

729
309.11

95544.68

96659.94

95925.77

96625.17

4003
4134

1.1321
1.1334
1.1336
1.1338

1.1444

0.7327
0.7340
0.7315
0.7324
0.7387
0.7388

95970.74

987
1099

30886

94054.49

1.1377
1.1432
1.1350
1.1360
1.1394

0.7326
0.7301
0.7298
0.7342
0.7348

83193.50

95440.73

96060.30
96361.52

27605

96890.85

788
320
87173

96146.71

279.8616°
119024

95974.30

96507.96

308
636
226

1.1371
1.1457
1.1463

0.7321
0.7371
0.7380

97027.84

96562.55

97289.16

94407.30

62121
104178

283 96782.56

1.1489

97568.99

97586.34

a Values ofQy (m®h=1).

b Entries in bold-face are satisfactory, i.e., values are almost as good as for the 1000th generation.
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Fig. 6. Mean and standard deviation/pdis for the Pareto solutions (shown kig. 5) of Problem 4 (fotVgen> 3).

values ofQy) increases with the generation number, with the the range) do not change much above about 80-100 gener-
range of NSGA-II-aJG becoming satisfactory (i.e., almostthe ations. This can be taken as an indication that convergence
same as that at the 1000th generation) at the 20th generatiomas been attained (in fact, this can be used for all previous
itself, faster than for NSGA-Il and NSGA-II-JG. Another results, even though higher values Mfmax have actually
characteristic of the Pareto sets is the distribution/spread ofbeen used). Interestingly, the mean and standard deviation of
the several points. Two parameters describe this aspect of thd g4t at the 100th generation are almost the same for all the
Pareto sets: thewean distance between consecutive points three algorithmdgrig. 6andTable 3show that there are oscil-
(note that the same number of chromosomes are used fotlations in both these parameters, even for as high a value of
all three techniques), and theundard deviation of these Ngenas 80. Similar oscillations in the behavior of the Pareto

distances. Kasat and Guptasat & Gupta, 200Bhave sug- set have been observed earlier, though qualitatively. It is also
gested the use of the mean and the standard deviatipgef observed that the mean and the standard deviatidnyef
(seeAppendix A) in any generation for this purpogeig. 6 convergéefaster to their final converged value for NSGA-II-

andTable 3show these parameters for the three techniques, ataJG than for the other two techniques (see italicized entries in
different generation$zig. 6a andTable 3show thatthe mean  Table 3. This means that this technique is the least expensive,
value off; 4istiS lower at the beginning (after some initial large computationally (since the computational time to achieve

values). This is because the range (of the Pareto set) is smalleconvergence is directly proportional to the number of gener-

and the same number of points is present in all generations.ations necessary). It may be added that one could improve
Itis found that the mean and standard deviatioh g§: (and the ‘spread’ of the Pareto sets by using theonstraint
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method Deb, 200J, in which we replace one objective func-
tion (in this caseQy) by an equality constraint and solve
the resulting optimization problem (with a single objective
function, in this case) several times over for several constant
values ofQ,y. This methodology has its own probleni3eb,
2001).

4. Conclusions

A few two-objective (maximizing the throughput while
minimizing the cost) and three-objective optimization prob-
lems (maximizing throughput while minimizing the cost as
well as the permeate concentration) are studied for the desali-
nation of brackish water and sea water. Pareto optimal sets of
equally good non-dominated solutions are obtained. The opti-
mal solutions for spiral wound modules are compared to those
for tubular modules. The membrane aréddesign parame-
ter), isthe mostimportant decision variable in the desalination
of brackish water and seawater using spiral wound modules.
In contrast, the applied pressureP (operating parameter),
is the most important decision variable in the desalination of
brackish water using tubular modules. Three Al-based algo-
rithms, NSGA-II, NSGA-II-JG and NSGA-II-aJG, are used
to obtain the optimal solutions and it is observed that NSGA-
I1-aJG is the mostrapid of these algorithms if one is interested
in obtaining reasonable, near-optimal solutions with a small
computational effort.
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Appendix A. Binary coded elitist non-dominated
sorting genetic algorithm, NSGA-II (Deb, 2001; Deb
et al., 2002) with the jumping gene operators, JG
(Kasat & Gupta, 2003) and aJG (Bhat et al., 2005)

1. Generate boxP, of N, binary-coded parent chromo-
somes (see flowchart ifkig. Al), using a sequence
of random numbers (e.g., a chromosome representing
two decision variables, each represented by five binaries
could be 11010 10110). Map each chromosome into a set
of real values of the decision variables. Use the model
equations to compute the values of all the objective func-
tions (for each chromosome).

2. Classify these chromosomes into fronts based on non-
domination Deb, 200) as follows:

(a) create new (empty) bo®;, of size,Np;
(b) transfer theth chromosome fron® to P/, starting
with the first;

Box P (N,): Generate N, parents

3.

Box P’ (N,): Classify and calculate I, and
Lyise of chromosomes in P

Y

Box P*” (N,): Copy better chromosomes
from P’

¥

Box D (N,): Do crossover and mutation of
chromosomes in P**

Y

Box D (N,): Do JG oralG operation

Box PD (2 N,): Combine P*” and D -\
Box PD’ (2 N,): Put PD into fronts > Elitism
Box P (N,): Select best N, from PD’
_/

Fig. Al. Flow chart of NSGA-Il and the JG adaptations.

(c) compare chromosomgwith each membey, in P/,
one at a time;

(d) if i dominateg (i.e., all objective functions ofare
superior to/better than those Jf removej from P’
and put it back irP at its place;

(e) if i is dominated by, removei from P’ and put it
back inP at its place;

(f) if i andj are non-dominated (i.e., at least one objec-
tive function ofi is inferior to that ofj, while all
others are superior), keep batand; in P’. Explore
alljinP;

(g) repeat, sequentially, for all chromosomesPinP’
constitutes the first front or sub-box (of sizeVp)
of non-dominated chromosomes. Assign all chro-
mosomes in this fronk rank=1;

(h) create subsequent fronts in (lower) sub-boxeB’ of
using the chromosomes remaining fin Compare
these membersnly with members present in the
currentsub-box. Assign all chromosomes in the indi-
vidual sub-boxes]irank=2, 3, ... Finally, all Np
chromosomes are i#*’, boxed into one or more
fronts.

Evaluate the crowding distandggist, for theith chro-

mosome in any front using:
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(a) rearrange all chromosomes in froitin ascending
order of the values of any one of their fithess func-
tions, F;

(b) find the largest cuboid (rectangle for two fitness
functions) enclosing, that just touches its nearest
neighbors in the F-space;

(c) I dist=1/2 (sum of all sides of this cuboid);

(d) assign large values fifist to solutions at the bound-
aries to make them important.

. Copy the better of th&, chromosomes of’ in a new

box, P” (‘better’ parents). Use:

(a) select any pait,and;j, from P’ (randomly, irrespec-
tive of fronts);

(b) identify the better of these two chromosomeis
better thary if (for minimization of all fithess func-
tions):

I rank # Ij,rank: i rank < Ij,rankv
Iirank = Ijrank © Iidist > I dist;

(c) copy (without removing fron®’) the better chromo-
some in a new boxy’”’;
(d) repeat tillP’” hasNp, members;
(e) copy all ofP” in a new box D, of sizeNp;
Not all of P’ need be irP” or D.
. Carry out crossover and mutatiddgb, 1995 of chro-
mosomes itD. This gives a box oV, daughter chromo-
somes:
(@) Crossover: randomly select two chromosomes

1993

(d) replace the set of binaries between these two loca-
tions by a new set of binaries (use random numbers).
For example, we may get 110D 11110
7. Copy allN, members of” and all theN, members of
D into box PD (elitism). Box PD has\g, chromosomes.
8. Reclassify these\g, chromosomes into fronts (box PD
usingonly non-domination (see Step 2 above).
9. Take the besV, from box PD and put into box?"”’.
10. This completes one generation. Stop if criteria are met.
11. CopyP’” into starting boxP. Go to Step 2 above.

Appendix B. Model equations

The volumetric flux, Jyy (Lonsdale et al., 1965
Rautenbach, 1986Sherwood, Brian, & Fischer, 1967
Soltanieh & Gill, 198) of the solvent is represented phe-
nomenologically by

Jw=a(AP — An) (A2.1)
while the mass flux/s, of the solute is given by
Js= b(cwall - Cp) (A2-2)

In the presence of concentration polarizatiddhérwood
et al., 1967, Jy, at steady state, is also given by

and a random crossover site (say, after the third We use

position) and exchange the binaries as shown below:

110110 1011 110]11 11010
OIT |11 1101 011]10 10110

(b) Mutation: for each binary ineach chromosome, gen-
erate a random number and check (usig if it

—

needsto be changed by this operator. Ifyes, switched j, — JwCp

it over (from O to 1 or vice versa).

Cwall — Cp
Jw =ksln ———— A2.3
w=koln (A2.3)

to estimate the osmotic pressure across the membrane. We
can also write the solute flux as

(A2.5)

. Do JG or aJG operation: select a chromosome (sequenCombining Egs. (A2.1)-(A2.3) (eliminating Cwan), we

tially) from D, say 11010 10110.

Check if JG/aJG operation is needed, using a random

number angh;c. If yes:

(&) generate a random number between 0 and 1;

(b) multiply this bylchrom, the total number of binaries
in the chromosome. Round off to convert into an

integer. This represents the position of the beginning
of a transposon (say, at the end of the third binary in Cp, =

the above chromosome);
(c) JG oraJG:

obtain, finally Rautenbach, 1986

bCp exp(w/ ks)
Jw + bexp(w/ ks)

Jw=a [AP — by (Cb - ) exp(w/ ks)}
(

A2.6)
and

bCp
b+ Jw exp(=Jw/ ks)

(A2.7)

The observed rejection is given by

e JG: generate another similar random number and
identify a second location (end of the JG) inthe p _ 1 _ S
selected chromosome (say, the after the seventh Co
binary);

¢ aJG: fix the second end of the JG using the spec- Estimation of mass transfer coefficient
ified string length/a36 (say laijc=4; so place a . .
marker at the end of tH&+ 4 = seenth binary) of Spiral wound module§hock & Miquel, 1987
the jumping geneRhat et al., 2005

(A2.8)

Sh = 0.065Re%86° 5025 (A2.9)
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ksd, d
where Sh = S h, Re:ﬂ and Sc = Y
Dp v Dp

The hydraulic diameter of a spiral wound module depends on
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Therefore, the osmotic coefficierdt,, can be obtained as

T

br= (A2.18)

the channel height, the specific surface area of the spacer and
the void fraction. Details for various membranes are given by B.3. Estimation of the cost

Shock and Miquel (1987)

For brackish water, the kinematic viscosity, can be
estimated from the data given [8ourirajan (1970jor the
NaCl-H0O system at 25C:

v = 0.0032+ 3.0 x 10°6C + 4.0 x 107°¢? (A2.10)

The mass diffusivityDag (NaCl-H0; T=25°C), is esti-
mated as 5.5 10 ®m2h~—1 at C=3.1kgn12 (Sourirajan,
1970).

For seawatetDag, 1 andp (Sekino, 1994 Taniguchi &
Kimura, 2005 Taniguchi et al., 2001can be estimated from
the following equations:

2513
Dag =6.725x 108 0.1546x 10°3C — ———~
AB X eXp< A0C - o1s T)
(A2.11)
1965
=1234x 107 000210 — —————
# X eXp< L= 7315+ T>
(A2.12)
and
p = 4984m + /24800012 + 7524mC (A2.13)
where m = 1.0069— 2.757 x 10°*T (A2.14)

B.1. Tubular module (Wiley et al., 1985)

For laminar flow, i.e., foRe < 2100 in a circular tube, the
Leveque relationshipRerry et al., 1991

d 0.33
Sh = 1.62<Re SCZ)

and for turbulent flow, i.e., foRe > 2100 Perry et al., 1997,
Wiley et al., 1985

(A2.15)

Sh = 0.023Re%® 5¢032  for Sc < 1,
Sh = 0.023Re%®7° 5025 for1 < Sc < 100Q

Sh = 0.0096Re%91 5035 for Sc > 1000 (A2.16)

B.2. Estimation of the osmotic coefficient (Sourirajan,

1970)

The osmotic pressure, is obtained from the data given

by Sourirajan (1970fpr the NaCl-HO system at 25C (con-
centration range: 0—49.95 kg and is correlated as:

7=0.7949C — 0.0021C%+ 7.0 x 10°°C% - 6.0 x 10~ 'C*
(A2.17)

The cost of production of desalinated water is given by
the following equationlaskan et al., 2000

AP\"
Cost= CrmemA + CmainA + Cpump<QW>
Whasdl
C AP
, CeleQuAP (A2.19)
n

Substituting the appropriate cost coefficients ar.6, one
obtains Maskan et al., 2000; Perry et al., 1997

Cost= 1.946x 10 34 + 357 x 1034

OwAP
161136

0.67
+ 0.0943< ) +2.315x 10730y AP

(A2.20)

The first and third terms on the right hand side of &®.20)

are not used in evaluating the ‘Cost’ for the operating-stage
optimization Problem 1, since they represent ‘sunken’ capital
that is already invested in an existing unit.
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