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Abstract

Multi-objective optimization using genetic algorithm (GA) is carried out for the desalination of brackish and sea water using spiral wound
or tubular modules. A few sample optimization problems involving two and three objective functions are solved, both for the operation of an

possible
entration.
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existing plant (which is almost trivial), as well as, for the design of new plants (associated with a higher degree of freedom). The
objective functions are: maximize the permeate throughput, minimize the cost of desalination, and minimize the permeate conc
The operating pressure difference,�P, across the membrane is the only important decision variable for anexisting unit. In contrast, for a
new plant,�P, the active area,A, of the membrane, the membrane to be used (characterized by the permeability coefficients for s
water), and the type of module to be used (spiral wound/tubular, as characterized by the mass transfer coefficient on the feed
the important decision variables. Sets of non-dominated (equally good) Pareto solutions are obtained for the problems studied. T
coded elitist non-dominated sorting genetic algorithm (NSGA-II) is used to obtain the solutions. It is observed that for maximum thro
the permeabilities of both the salt and the water should be the highest for those cases studied where there is a constraint on th
concentration. If one of the objective functions is to minimize the permeate concentration, the optimum permeability of salt is shifted
its lower limit. The membrane area is the most important decision variable in designing a spiral wound module for desalination of
water as well as seawater, whereas�P is the most important decision variable in designing a tubular module for the desalination of bra
water (where the quality of the permeate is of prime importance). The results obtained using NSGA-II are compared with those fro
more efficient, algorithms, namely, NSGA-II-JG and NSGA-II-aJG. The last of these techniques appears to converge most rapidly.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Desalination of seawater and brackish water is rou-
tinely used nowadays for overcoming the huge scarcity
of potable water in different parts of the world. Desali-
nation involves the reduction of the concentration of
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the total dissolved solids (TDS) to less than abo
200× 10−3 kg m−3 (200 mg L−1). Brackish water has a
much lower TDS (<10,000× 10−3 kg m−3) than seawater
(>30,000× 10−3 kg m−3). This difference in the TDS is asso
ciated with substantial differences in the osmotic pressu
associated with these operations, leading to large variat
in the operating pressure differences across the reverse o
sis (RO) membrane. The largest desalination plant in
world treating brackish water (Lohman, 1994) is located at
Yuma, AZ, USA. This has a capacity of 275,000 m3 day−1. It
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Nomenclature

a permeability coefficient for water
(m h−1 bar−1)

A active area of membrane (m2)
b permeability coefficient of salt (m h−1)
bπ osmotic coefficient (Eqs.(A2.4) and(A2.10))

(m3 bar kg−1)
C salt concentration (kg m−3)
Cost operating cost of desalination unit ($ h−1)
Cele cost of electricity ($ kW−1 h−1)
Cmain maintenance cost of membrane ($ m−2 h−1)
Cmem capital cost of membrane ($ m−2 h−1)
Cpump capital cost of the pump ($ h−1)
dh hydraulic diameter of channel (m)
DAB mass diffusivity of salt (A) through water (B)

(m2 h−1)
fi ith objective function (m3 h−1; $ h−1; kg m−3)
H penalty parameter defined in Eq.(3)
Idist crowding distance
Irank rank
Jw volumetric flux of water (m h−1)
Js mass flux of salt (kg m−2 h−1)
ks mass transfer coefficient of salt in feed side

(m h−1)
lchrom length of chromosome
lsubstr length of substring
laJG string length of jumping gene
m defined in Eq.(A2.14)
n exponent for the pumping cost (Eq.(A2.13))
Ngen generation number
Ngmax maximum number of generations
Np total number of chromosomes in the popula-

tion
pc crossover probability
pJG jumping gene probability
pm mutation probability
P pressure, bar
Pen penalty parameter (Eq.(3))
Qw volumetric flow rate (throughput) (m3 h−1)
R observed rejection
Re Reynolds’ number
Sc Schmidt number
Sh Sherwood number
T temperature of the feed (◦C)
v velocity of water in feed channel (m h−1)
Wbase reference value of power for estimating

pumping cost (Eq.(A2.13)) (kW)

Subscript/superscript
b bulk
bw brackish water
d desired
L lower bound

p permeate
ref reference, Yuma plant (Lohman, 1994)
s salt
sw seawater
U upper bound

Greek letters
∆ difference
η efficiency of the pump
ν kinematic viscosity of salt solution (m2 h−1)
π osmotic pressure (bar)
ρ density of seawater (kg m−3)

uses spiral wound cellulose acetate membranes to treat raw
water having 3100× 10−3 kg m−3 TDS and produces per-
meate water having a TDS less than 200× 10−3 kg m−3. The
largest desalination plant in the world processing seawater
(Ayyash, 1994) operates in Jeddah, Saudi Arabia. This has a
capacity of 56,800 m3 day−1 and treats water having a TDS
of approximately 44,000× 10−3 kg m−3.

RO has several advantages over other desalination pro-
cesses such as distillation, evaporation and electro-dialysis
(Ho & Sirkar, 1992). The main advantages of RO over other
desalination processes are its simple design, lower mainte-
nance costs, easier de-bottlenecking, simultaneous removal
of both organic and inorganic impurities, low discharge in
the purge stream, and energy savings. RO is a rate-governed
pressure-driven process. The solvent flux depends upon the
applied pressure difference, trans-membrane osmotic pres-
sure difference, concentration of feed, permeability coeffi-
cients of salt and water, and the extent of concentration polar-
ization. The flux increases (at the expense of high concentra-
tion polarization) with an increase in the operating pressure
difference and permeability coefficients, and decreases with
an increase in the salt concentration.

Rigorous optimal design (or operation) of RO modules
will help in reducing their cost. Attempts have been made
to obtain optimal designs of RO units considering cost as
the single objective function.Wiley, Fell and Fane (1985)
h ules
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ill climb method without constraints, with Palmer’s (Palmer
969) axis rotation method. Sequential quadratic progr
ing (SQP;Gill, Murray, & Wright, 1991) has been use
y Maskan, Wiley, Johnston, and Clements (2000)to find
ptimal networks of reverse osmosis modules. These st

nvolve the optimization of only a single objective functi
hich may, at times, be taken as a weighted-average of se
onflicting objective functions. The assignment of value
he weighting factors is subject to considerable controv
ike most problems, the design of RO modules is also a
iated with several non-commensurate, objective func
hat need to be optimized simultaneously in the presenc
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few constraints. Such problems are best handled using multi-
objective optimization (MOO) techniques. In such problems,
a set of several equally good (non-dominated) optimal solu-
tions is often obtained (instead of a single optimal point),
called a Pareto set. The basic advantage of MOO formula-
tions is that the decision-maker is not confined to look at
only a single mathematically optimal solution (usually that
involving the minimum cost), but he/she can examine a set of
efficient solutions using a judgment of the trade-offs involved,
refining his/her final decision (Mavrotas & Diakoulaki, 1998;
Deb, 2001). Indeed, Pareto sets are becoming an ‘increas-
ingly effective way to determine the necessary trade-offs
between conflicting objective functions’ (D.E. Goldberg in
Deb, 2001). The use of a single objective function which is
a weighted-average of several objectives also has the draw-
back that certain optimal solutions may be lost since they may
never be explored, particularly when the non-convexity of the
objective function gives rise to a duality gap (Goicoechea,
Hansen, & Duckstein, 1982). Unfortunately, there is no study
on the optimal design of RO modules in the literature using
multiple objective functions, though a parallel study (Yuen,
Aatmeeyata, Gupta, & Ray, 2000) on beer dialysis (mini-
mizing the alcohol content of beer to give low-alcohol beer,
while maximizing the taste chemicals in the product) has
been reported. Optimal RO design in desalination involves
the selection of membrane material, module geometry (viz.,
p em-
b ter),
o nd the
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then mapped into real numbers for use in model equations).
This is an unavoidable compromise and causes problems
(Deb, 2001), e.g., it slows down the computing speed and,
at times, renders convergence impossible. Modifications
(e.g., real coded GAs, the jumping gene adaptation, etc.)
are becoming available but each technique has its own
limitations.

Several workers have extended SGA to solve multi-
objective optimization problems. Any of these techniques,
reviewed recently byDeb (2001)andCoello Coello, Veld-
huizen and Lamont (2002), can be used to obtain the Pareto
fronts. A popular algorithm for such problems is the non-
dominated sorting genetic algorithm (NSGA), developed
by Deb and coworkers (Deb, 2001). Two versions of this
technique are available, NSGA-I (Srinivas & Deb, 1995)
and NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002).
Bhaskar, Ray, and Gupta (2000)have reviewed the variety of
multi-objective optimization problems in chemical engineer-
ing that have been solved in the last decade using NSGA-I
(as well as the earlier optimization studies using traditional
techniques). NSGA-II introduces the concept of elitism (Deb,
2001) and has been applied recently to solve two highly
computationally intensive problems in chemical engineer-
ing, namely, the multi-objective optimization of an industrial
fluidized-bed catalytic cracker unit (FCCU;Kasat, Kunzru,
Saraf, & Gupta, 2002) and the unsteady operation of a steam
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hroughput (Bhattacharyya, Williams, Ray, & McCray, 199;
arekh, 1988). One should be able to select optimal m
le parameters that provide the highest possible throug
first objective function) while simultaneously minimizi
he cost of desalination (second objective function). Thes
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or multi-objective optimization studies.
Over the last few years, scientists, engineers and ec

ists have used AI-based evolutionary techniques, pa
arly, genetic algorithms (GA;Deb, 1995; Goldberg, 198
olland, 1975), extensively to solve optimization proble

nvolving single objective functions. This basic algorith
imple GA or SGA (Goldberg, 1989), offers advantage
Deb, 2001; Holland, 1975) over more traditional optimiza
ion approaches (e.g., several search techniques, Pontry
rinciple, SQP, etc.), in some cases. Moreover, it has
dvantage that it does not require good initial guesse

he values of the ‘decision variables’. It uses a populatio
everal points simultaneously along with probabilistic o
tors, viz., reproduction, crossover and mutation, insp
y natural genetics. In addition, SGA has the advantage

t uses only the values of the objective functions and not
erivatives, as required by gradient search techniques.
arly algorithms, binary coding was used for represen
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eformer (Nandasana, Ray, & Gupta, 2003). An importan
eature of NSGA-II is that the best members are sele
rom a combined pool of parents and daughters (gene
y crossover and mutation of the parents), and these be

he parents for the next generation. Elitism reduces the d
ity of the gene pool, but offers several advantages (Deb,
001). Kasat and Gupta (2003), inspired by the concept

umping genes (JG or transposons;McKlintock, 1987; Stryer
000) in biology, developed the jumping gene (JG) op

or for use with SGA/NSGA. This macro–macro mutat
peration in the binary-coded NSGA-II-JG speeds up
ptimization of FCCUs by almost an eight-fold factor, a
rovides theglobal optimal Pareto front for the test proble
DT4 (Deb, 2001; Zitzler, Deb, & Thiele, 2000), which could
ot be solved satisfactorily using the binary-coded NS

I. The JG operator helps improve the diversity of the g
ool and, thus, counteracts the negative effect of elit
further adaptation of NSGA-II-JG has been presente
uria, Verma, Mehrotra, and Gupta, 2005). This is referred

o as NSGA-II-mJG (modified JG). This algorithm has b
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iven inAppendix A.
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The present work involves the simulation of the desali-
nation plant (Lohman, 1994) at Yuma, followed by the for-
mulation and solution of a few multi-objective optimization
problems for desalination using RO modules. The binary
coded NSGA-II (Deb, 2001; Deb et al., 2002) is used. The
results are then compared with those obtained with NSGA-
II-JG and NSGA-II-aJG so as to study the efficiency of these
algorithms. The optimization is carried out both at theoper-
ating stage (Lohman, 1994; optimization of the operating
conditions in an existing unit) as well as at the design stage
(optimization of a new plant), to illustrate the variety of
optimization problems that can be solved. The optimal solu-
tions of the first problem are also compared with the actual
operating point of the existing unit (Lohman, 1994). The
methodology is quite general and can be used for other plants
as well. It may be mentioned that this is the first application
of the multi-objective elitist NSGA-II with the jumping gene
adaptations in the area of membrane separation processes.

2. Formulation

2.1. Model of the reverse osmosis (RO) process

Various mathematical models are available that describe
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hollow-fiber, and tubular) using the correlations summarized
in Appendix B. The throughput,Qw, also depends on one
operating condition: the pressure difference,�P, across the
membrane. The solute concentration,Cb, in the feed and the
temperature,T, of operation, are usually specified (constants).

Eq. (1a) is an implicit nonlinear algebraic equation that
can easily be solved numerically to giveJw and Qw for a
set of values ofCb, T, A, a, b, ks and�P, bπ can be esti-
mated using Eqs.(A2.17) and(A2.18). The secant method
(Ray & Gupta, 2004) is used to solve this equation. This
method requires lower and upper bounds (estimates) ofJw,
as well as two initial guesses of this root. The values ofCp
and the cost can then be evaluated using Eqs. (1b) and (1c),
respectively.

2.2. Multi-objective optimization

The plant at Yuma, AZ, USA (Lohman, 1994) uses
a spiral wound module and treats brackish water. The
parameters characterizing this unit first need to be esti-
mated (‘tuned’). This is done using the following available
information (Lohman, 1994): A = 3.93072× 105 m2;
Qw = 275,000 m3 day−1 = 11,458 m3 h−1; �P = 27.6 bar;
Cb = 3.1 kg m−3; observed rejection = 97%;Cp = 0.2 kg m−3

andT = 25◦C. The exact value ofks depends on the geomet-
ric parameters of the element (i.e., the number of leaves,
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he local behavior and performance of the RO process
ransport through RO membranes is well described by
idely accepted solution diffusion model (Lonsdale, Merten
Riley, 1965; Rautenbach, 1986; Soltanieh & Gill, 1981).

he detailed equations (for isothermal operation) are g
n Appendix B. The permeate flux,Jw (=Qw/A), the permeat
uality,Cp, and the cost, Cost, the three important varia

hat are used as objectives in this study, are given by

Jw = a

[
�P − bπ

(
Cb − bCb exp(Jw/ks)

Jw + b exp(Jw/ks)

)
exp(Jw/ks)

Cp = bCb

b + Jw exp(−Jw/ks)

Cost= CmemA + CmainA + Cpump

(
Qw�P

Wbaseη

)n

+ CeleQw�

η

he variables in Eq.(1)are defined in the Nomenclature. T
olumetric flow rate,Qw, of the permeate can be expresse
erms of fourdesign variables: the area,A, of the membrane
he permeability coefficient,a, of water, the permeabilit
oefficient,b, of the salt, and the feed-side liquid film ma
ransfer coefficient,ks (Brian, 1965, 1966; Kimura & Sourira-
an, 1968; Sherwood, Brian, Fisher, & Dresner, 1965; Sirkar,
ang, & Rao 1982). The values ofks depend upon the hydr
ynamics on the feed side (Ohya & Taniguchi, 1975; Ohya,
akajima, Takagi, Kagawa, & Negishi, 1977; Perry, Green
Malony, 1997; Rao & Sirkar, 1978; Shock & Miquel,

987; Stanojevic, Lazarevic, & Radic, 2003; Taniguchi
978; Taniguchi & Kimura, 2005; Taniguchi, Kurihara, &
imura, 2001; Wiley et al., 1985), and may be estimated f
ifferent RO modules (e.g., plate and frame, spiral wo
(a)

(b)

(c)

(1)

he thickness of spacers, the porosity of the feed sp
nd the membrane thickness) and the physical prop
mainly, density, kinematic viscosity and mass diffusiv
f the salt solution, and is estimated using Eq.(A2.9).
etails of different types of spiral wound modules are g
y Shock and Miquel (1987). We have used values cor

ponding to a FilmTec FT 30 spiral wound module (Shock
Miquel, 1987) in the present study. The ‘tuned’ valu

f the two unknown parameters,a and b, are obtained b
urve-fitting the operating data, as 1.80× 10−3 m bar−1 h−1

nd 5.04× 10−4 m h−1, respectively. A simple two-objectiv
ptimization problem for the (operating) plant at Yu
referred to asoperating-stage optimization) is first solve
Problem 1). The optimal value of the single decision v
ble,�P, is to be obtained. Since the permeabilities,a andb,
epend primarily on the membrane, and since the latter
ame for all values of�P, the tuned values of these param
ers are used. Thus, for this problem, values ofCb, bπ, A, a,
, T, and the module are specified. Two objective funct
re used: maximization of the permeate flow rate,Qw, and
inimization of theCost. The permeate concentration,Cp, is
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Table 1
Details of the several optimization problems studied

Problem no. 1 2 3 4 5

Module Spiral wound (FilmTec FT30) Spiral wound
(FilmTec FT30)

Tubular module
(PCI)

Spiral wound
(FilmTec
FT30)

Tubular module
(PCI)

ks (m h−1) Eq.(A2.9) (Shock & Miquel,
1987)

Eq.(A2.9) (Shock &
Miquel, 1987)

Eqs.(A2.15)and
(A2.16)(Wiley
et al., 1985)

Eq.(A2.9)
(Shock &
Miquel, 1987)

Eqs.(A2.15)and
(A2.16)(Wiley
et al., 1985)

Feed Brackish water Brackish water Brackish water Sea water Brackish Water
Operating/design Operating (Yuma) Design Design Design Design
Cb (kg m−3) 3.1 (Lohman, 1994) 3.1 (Lohman, 1994) 3.1 (Lohman, 1994) 35.0 3.1 (Lohman, 1994)
bπ (m3 bar kg−1) 0.789b 0.789b 0.789b 0.781b 0.789b

Values (existing) or
bounds (new)

�P (bar) 10–50 10–50 10–50 75–250 10-50
10−5A (m2)a 3.93072 (Lohman, 1994) 1.0–4.0 2.0–4.0 1.0–4.0 2.0-4.0
103a (m3 m−2 bar−1 h−1) 1.8 (Shock & Miquel, 1987) 0.5–5.0 0.2–1.0 0.5–5.0 0.2-1.0
104b (m3 m−2 h−1) 5.04 (Shock & Miquel, 1987) 0.1–1.0 0.08–0.3 0.1–1.0 0.08-0.3
Cp,d

c (kg m−3) 0.2 0.2 0.2 – –

a 103a = 1.8 representsa = 1.8× 10−3, etc.
b Calculated from Eqs.(A2.17)and(A2.18).
c Cp,d is used as an objective function in Problem 5 (and not used as a constraint in Problem 4).

constrained to lie below a desired value,Cp,d. This problem,
relevant to the operation of the existing plant at Yuma, can
be written mathematically, as:

Problem 1. Yuma plant; specifiedCb,bπ,A,a,b,T; FilmTec
FT 30 spiral wound module

Maxf1(�P) ≡ Qw

Qw,ref
(a)

Min f2(�P) ≡ Cost

Costref
(b)

Subject to (s.t.) :

Model equations (Appendix 2) (c)

Bounds : �PL ≤ �P ≤ �PU (d)

Constraint : Cp ≤ Cp,d (e)

(2)

In Eq.(2),Qw,ref and Costref (=11,458 m3 h−1 and $ 2904 h−1,
respectively), estimates for the currently operating Yuma
plant using Eq.(1), are used to normalize the two objective
functions,�PL and�PU are the lower and upper bounds on
�P (values given inTable 1) andCp,d is taken as 0.2 kg m−3.
Eq. (A2.9) is used to estimateks (for any Qw), while the
Cost is given only by the second (constant for allQw, since
A is constant) and fourth terms of the right hand side of Eq.
(1c) (since the remaining two terms are already ‘sunk’ for
a
I
e tant
s

nits
u e
d -
b le

(ks). The membrane permeability coefficients,a andb, are
related to the thickness of the membrane and its properties,
namely, the diffusivities of salt and water in the membrane,
the partition coefficient of the solute in the membrane, the
feed temperature and, the nature of the concentration polar-
ization, and can be considered as decision variables directly.
A is the membrane area and can vary continuously.ks depends
on the hydrodynamics associated with the membrane module,
and can be estimated using the correlations inAppendix Bfor
any desired module. Two, two-objective optimization prob-
lems are being studied here using two different modules (so
that the results can be compared), namely, the FilmTec FT 30
spiral wound module (Shock & Miquel, 1987), and the PCI
tubular module (Wiley et al., 1985):

Problems 2 and 3. (design stage; specifiedCb, module,T):

Max f1(�P, A, a, b) ≡ Qw

Qw,ref
(a)

Min f2(�P, A, a, b) ≡ Cost

Costref
(b)

Subject to (s.t.) :

Model equations (Appendix B) (c)

Bounds : �PL ≤ �P ≤ �PU, AL ≤ A ≤ AU,

U U

(3)

T
a e are
c rlier).
T Eq.
(

n existing/operating plant; see discussion inAppendix B).
t may be noted that the normalization constant, Costref, is
valuated using all four terms in Eq. (1c) (this is unimpor
ince Costref is a constant anyway).

We could also study the optimization of desalination u
nder more flexibledesign conditions (for new units). Th
ecision variables, then, are not only�P, but also the mem
rane parameters, namely,A, a, b and, the membrane modu
aL ≤ a ≤ a , bL ≤ b ≤ b (d)

Constraint : Cp ≤ Cp,d (e)

he values of the normalization constants,Qw,ref and Costref,
re taken to be the same as in Problem 1 (since thes
onstants anyway; this does not matter, as discussed ea
able 1gives the details. Problem 4 is also described by
3), but corresponds to the desalination ofsea water using a
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Table 2
Computational parameters used for Problems 1–5

Problem no. 1 2 3 4 5 4(JG) 4(aJG)

Ngmax 500 1000 1000 1000 10000 1000 1000
Np 100 100 100 100 100 100 100
lsubstr 32 32 32 32 32 32 32
lchrom 32 128 128 128 128 128 128
pc 0.90 0.99 0.98 0.90 0.80 0.98 0.98
pm 0.01 0.001 0.01 0.02 0.015 0.001 0.001
pJG – – – – – 0.80 0.80
laJG – – – – – – 12
Random seed numbera 0.765 0.765 0.765 0.765 0.765 0.765 0.765
H 105 105 105 – – – –

a Random numbers are generated using theKnuth (1997)portable subtractive pseudo-random number generator.

FilmTec FT30 spiral-wound module. Because the salt con-
centration in sea water is high, the constraint onCp is omitted
for this problem. In Problems 2–4, all four terms on the right
hand side of Eq. (1c) are used to estimate the Cost (see dis-
cussion inAppendix B).

The constraint onCp in Problems 1–3 (Eqs. (2e) and (3e))
is taken care of using a penalty function approach (Deb, 1995,
2001). We add (for minimization of an objective function) or
subtract (for maximization) a penalty, Pen, given by

Pen≡ H

[
1 −

(
Cp

Cp,d

)]
(4)

to both the objective functions (in Eqs.(2)and(3)). In Eq.(4),
the penalty, Pen, is taken to be a very large number (compared
to the values of the two objective functions) whenever the
value ofCp is aboveCp,d, but Pen is zero whenCp is below
Cp,d (Deb, 1995, 2001). Table 2gives the values ofH used.
Its value is large enough so that the solutions do not change
with a further increase ofH.

The NSGA-II (Kasat et al., 2002), NSGA-II-JG (Kasat
& Gupta, 2003) and NSGA-II-aJG (Bhat et al., 2005) codes
available to us maximizeall the objective functions. A pop-
ular transformation for an objective function,f, that has to be
minimized, to one involving the fitness function,F, that has
to be maximized, is given by

F

T
1

3

test
p rs.
P ing
� re
o
s This
c e of

errors. Several other standard tests, described byKasat et al.
(2002)were also tried. The best values of the computational
parameters were then obtained for the different problems.
These are given inTable 2.

In Problem 1, there is only one degree of freedom (a
selected value ofJw determines the complete solution) and so
the solution of Eq.(2)can be obtained analytically. It is found
that as�P increases,Qw increases and the Cost goes down,
a characteristic of a Pareto set. This problem is a relatively
trivial one and so detailed results are not being presented
here (but can be supplied on request), and this problem is not
pursued further.

Problem 2 is a more interesting, design-stage multi-
objective optimization problem, involving more than a single
degree of freedom. Pareto sets are obtained, as shown in
Fig. 1a. The CPU time taken for this problem (as well as
all others, using any of the adaptations of NSGA-II) for 1000
generations, and using 100 chromosomes is 1 min (on a Pen-
tium IV, 1.7 GHz, 256 MB RAM). The mean value of the
crowding distance,Ii,dist (see Step 3c inAppendix A), as well
as the standard deviation of these values, in any generation,
can be used to get an idea of the degree of convergence of
the Pareto set. Details of this method are described inKasat
and Gupta (2003). Alternatively, an eye estimate can be used
to get an idea of when the Pareto set has stopped changing
(converged) from generation to generation, and if the ‘spread’
o evia-
t give
n al
m ility
c d
m that
t lue
o ith
� bar).
T the
i t
a
m e
c di-
t n the
= 1

1 + f
(5)

his transformation does not alter the optimal solutions (Deb,
995, 2001).

. Results and discussion

The NSGA-II computer code was tested on a few
roblems (Deb, 2001) to make sure that it was free of erro
roblem 1 (Table 1) was run with a single chromosome us
PL =�PU = 27.6 bar. The following optimal values we
btained:Qw = 11458.0 m3 h−1 and Cost =$ 2904.0 h−1, the
ame as actually used (simulation values) in the plant.
onfirms that the code finally used for optimization is fre
f the points in the set are near-uniform (the standard d
ion of Ii,dist can be used for this). The two approaches
early similar results.Fig. 1d and e show that the optim
odule must have the maximum permissible permeab

oefficients (a and b) for the FilmTec FT30 spiral woun
embrane. This is not surprising. What is interesting is

he increase inQw is first achieved by an increase in the va
f membrane area,A, to its maximum permissible value (w
P being constant at an intermediate value of about 33
hereafter,Qw and the Cost both increase because of

ncrease in�P (with the membrane area,A, being constan
t its maximum specified value). This indicates thatQw is
ore sensitive toA than to�P. It may be mentioned that th

onstraint onCp in Problem 2 can be replaced by an ad
ional term in the Cost that accounts for the decrease i



C. Guria et al. / Computers and Chemical Engineering 29 (2005) 1977–1995 1983

Fig. 1. Optimal solutions for Problem 2 (seeTable 1for details).
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Fig. 2. Optimal solutions for Problem 3 (seeTable 1for details).
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Fig. 3. Optimal solutions for Problem 4 (seeTable 1for details).
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Fig. 4. Optimal solutions for Problem 5 (seeTable 1for details).
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value of the permeate concentration when its specification
is violated. This, and several other interesting optimization
problems, can be solved but are not presented since the aim
is to present results of only a few simple problems.

Fig. 2 shows results for the design-stage two-objective
optimization problem for the desalination of brackish water
using a different module, namely the PCI tubular module.
Fig. 2a shows the Pareto set.Fig. 2d and e show that the
optimal values of the permeabilities of water and salt must
have the maximum possible values. This is similar to obser-

vations fromFig. 1(for the spiral wound module). In the case
of the PCI module, the increase inQw is first achieved by an
increase of�P to its maximum possible value (with the mem-
brane area being constant at its minimum specified value).
Thereafter,Qw and Cost both increase with an increase in
the membrane area (with the�P being constant at its upper
limit). This indicates thatQw is more sensitive to�P than to
A for this module. The contrast in the behaviors of the results
for the two modules is clearly brought out inFigs. 1 and 2.
The value ofCp remains almost constant after�P attains

F
u

ig. 5. Optimal Pareto solutions for Problem 4 using NSGA-II, NSGA-II-JG
pwards by 10,000 and 20,000 $ h−1, respectively, on the ordinate so that the p
and NSGA-II-aJG (results for NSGA-II-JG and NSGA-II-aJG are displaced
lots can be easily compared).
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Fig. 5. (Continued ).

its maximum value. This is consistent with intuitive expec-
tations. A small amount of scatter is observed in the optimal
values of�P, A, a and b in Figs. 1 and 2. It is clear that
differences in these four decision variables compensate for
each other, and do not affect the Pareto set much. This is a
characteristic of problems associated with several degrees of
freedom, and such insensitivity of the Pareto set to scatter
in a few decision variables has been encountered earlier in
real-life studies (Bhaskar et al., 2000; Sareen & Gupta, 1995;
Tarafder, Rangaiah, & Ray, 2005). It is known that GA does
not guarantee optimality of the final solutions (Deb, 2001)
and a few sub-optimal points/solutions are almost always

encountered. However, one can easily infer the optimal Pareto
solution from the results generated. One way of eliminating
the scatter is to express the decision variables as low-order
polynomials (Sareen & Gupta, 1995), and obtain optimal val-
ues of the coefficients used. These would givenear-optimal
solutions that are more useful. It is interesting to observe from
Figs. 1 and 2that spiral wound modules give higher through-
puts than tubular ones (for similar values of the operating
variables), of course at higher costs.

Fig. 3 presents the Pareto set for the design-stage, two-
objective optimization of asea water desalination unit using
the FilmTec FT 30 spiral wound module (Problem 4,Table 1).



C. Guria et al. / Computers and Chemical Engineering 29 (2005) 1977–1995 1989

Fig. 5. (Continued ).

Here, the bounds of the membrane permeability coefficients
of water and salt (i.e.,a andb) of Problem 2 are used, but
much higher ranges of�P are imposed for obvious reasons.
In this case,Qw increases initially because of the increase in
both the membrane area,A, as well as�P. After the maxi-
mum area of the membrane is attained, a further increase in
Qw is obtained due to the increase in�P. Small amounts of
scatter in the decision variables, mainly,�P, A, a andb is
observed, but the final Pareto set is insensitive to these vari-
ations. The qualitative similarity of the optimal solutions for

the two cases (Problems 2 and 4, involving different ranges for
�P) for treating brackish water and sea water, respectively,
using the FilmTec FT 30 spiral wound membrane is to be
noted, and contrasted to the results for the PCI tubular module
(Problem 3).

The occurrence of a minimum inCp in Problem 3
(Fig. 2) suggests that we can take the minimization ofCp
as a third objective function. We, therefore, solve the fol-
lowing three-objective optimization problem (at the design
stage):
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Problem 5. (design stage; specifiedCb, T, PCI module):

Maxf1 (�P, A, a, b) ≡ Qw

Qw,ref
(a)

Min f2 (�P, A, a, b) ≡ Cost

Costref
(b)

Min f3 (�P, A, a, b) ≡ Cp (c)

Subject to (s.t.) :

Model equations (Appendix B) (d)

Bounds : �PL ≤ �P ≤ �PU, AL ≤ A ≤ AU,

aL ≤ a ≤ aU, bL ≤ b ≤ bU (e)

(6)

The Cost is estimated for Problem 5 using all four terms on the
right in Eq. (1c). The reference values ofQw,ref and Costref,
are the same as in Problem 1.

Fig. 4shows the results of Problem 5. The optimal points
in Fig. 4a and b, together, comprise a three-dimensional
Paretosurface. A 3D plot involving the objective functions
is shown in Fig. 4g. Since the cost increases (worsens)
(andCp increases (worsens), albeit slightly) asQw increases
(improves) over the entire range of the latter, the optimal
solution has the characteristics of a Pareto set. In the 3D plot,
some peaks are observed because of the outliers inFig. 4a and
b, but a general increase is observed from the lowQw–low
C –low Cost end to the highQ –high C –high Cost end.
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his problem is, clearly, more meaningful. A decision ma
an be provided these results, and may be asked to
n appropriate ‘preferred’ solution. The results of the th
bjective Problem 5 are also compared with those o

wo-objective Problem 3 inFig. 4. It is seen that the degree
catter increases with the introduction of the third objec
unction to Problem 3. The optimal values ofCp for Problem
are always lower than those obtained in Problem 3 bec

his variable is being minimized (Eq. (6c)). This forces
embrane permeability coefficient of the salt,b, to take on

ts lowest value (Fig. 4e), while a shifts to its upper limi
Fig. 4d) (as compared with the two-objective problem w
he constraint on the permeate concentration (Problem
ther optimal parameters for the three-objective prob
iz., �P, a andA, vary withQw (Fig. 4c, d and f) almost in
imilar manner as compared to the two-objective proble

Two recent improvements of NSGA-II (Deb, 2001; Deb e
l., 2002), namely, NSGA-II-JG (Kasat & Gupta, 2003) and
SGA-II-aJG (Bhat et al., 2005), have been used to solve o
f the problems (Problem 4) to see if the jumping gene
daptations provide any advantage. The best values o
omputational parameters have been obtained for all
echniques, and are listed inTable 2. Fig. 5shows the deve
pment of the Pareto set over the generations using the
odes (the values of the cost for NSGA-II-JG and NSGA
JG have been increased by 10,000 and 20,000 $ h−1, respec

ively, to displace their plots vertically, so that they can
ompared easily), whileTable 3gives numerical values at
ew generations. It is observed fromFig. 5as well asTable 3
hat the ‘range’ of the Pareto set (minimum and maxim
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Fig. 6. Mean and standard deviation ofIi,dist for the Pareto solutions (shown inFig. 5) of Problem 4 (forNgen≥ 3).

values ofQw) increases with the generation number, with the
range of NSGA-II-aJG becoming satisfactory (i.e., almost the
same as that at the 1000th generation) at the 20th generation
itself, faster than for NSGA-II and NSGA-II-JG. Another
characteristic of the Pareto sets is the distribution/spread of
the several points. Two parameters describe this aspect of the
Pareto sets: themean distance between consecutive points
(note that the same number of chromosomes are used for
all three techniques), and thestandard deviation of these
distances. Kasat and Gupta (Kasat & Gupta, 2003) have sug-
gested the use of the mean and the standard deviation ofIi,dist
(seeAppendix A) in any generation for this purpose.Fig. 6
andTable 3show these parameters for the three techniques, at
different generations.Fig. 6a andTable 3show that the mean
value ofIi,dist is lower at the beginning (after some initial large
values). This is because the range (of the Pareto set) is smaller
and the same number of points is present in all generations.
It is found that the mean and standard deviation ofIi,dist (and

the range) do not change much above about 80–100 gener-
ations. This can be taken as an indication that convergence
has been attained (in fact, this can be used for all previous
results, even though higher values ofNgmax have actually
been used). Interestingly, the mean and standard deviation of
Ii,dist at the 100th generation are almost the same for all the
three algorithms.Fig. 6andTable 3show that there are oscil-
lations in both these parameters, even for as high a value of
Ngen as 80. Similar oscillations in the behavior of the Pareto
set have been observed earlier, though qualitatively. It is also
observed that the mean and the standard deviation ofIi,dist
convergefaster to their final converged value for NSGA-II-
aJG than for the other two techniques (see italicized entries in
Table 3). This means that this technique is the least expensive,
computationally (since the computational time to achieve
convergence is directly proportional to the number of gener-
ations necessary). It may be added that one could improve
the ‘spread’ of the Pareto sets by using theε–constraint
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method (Deb, 2001), in which we replace one objective func-
tion (in this case,Qw) by an equality constraint and solve
the resulting optimization problem (with a single objective
function, in this case) several times over for several constant
values ofQw. This methodology has its own problems (Deb,
2001).

4. Conclusions

A few two-objective (maximizing the throughput while
minimizing the cost) and three-objective optimization prob-
lems (maximizing throughput while minimizing the cost as
well as the permeate concentration) are studied for the desali-
nation of brackish water and sea water. Pareto optimal sets of
equally good non-dominated solutions are obtained. The opti-
mal solutions for spiral wound modules are compared to those
for tubular modules. The membrane area,A (design parame-
ter), is the most important decision variable in the desalination
of brackish water and seawater using spiral wound modules.
In contrast, the applied pressure,�P (operating parameter),
is the most important decision variable in the desalination of
brackish water using tubular modules. Three AI-based algo-
rithms, NSGA-II, NSGA-II-JG and NSGA-II-aJG, are used
to obtain the optimal solutions and it is observed that NSGA-
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Fig. A1. Flow chart of NSGA-II and the JG adaptations.

(c) compare chromosome,i, with each member,j, in P′,
one at a time;

(d) if i dominatesj (i.e., all objective functions ofi are
superior to/better than those ofj), removej from P′
and put it back inP at its place;

(e) if i is dominated byj, removei from P′ and put it
back inP at its place;

(f) if i andj are non-dominated (i.e., at least one objec-
tive function of i is inferior to that ofj, while all
others are superior), keep bothi andj in P′. Explore
all j in P′;

(g) repeat, sequentially, for all chromosomes inP. P′
constitutes the first front or sub-box (of size≤ Np)
of non-dominated chromosomes. Assign all chro-
mosomes in this frontIi,rank= 1;

(h) create subsequent fronts in (lower) sub-boxes ofP′
using the chromosomes remaining inP. Compare
these membersonly with members present in the
current sub-box. Assign all chromosomes in the indi-
vidual sub-boxes,Ii,rank= 2, 3, . . . Finally, all Np
chromosomes are inP′, boxed into one or more
fronts.

3. Evaluate the crowding distance,Ii,dist, for the ith chro-
mosome in any front using:
I-aJG is the most rapid of these algorithms if one is intere
n obtaining reasonable, near-optimal solutions with a s
omputational effort.
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ppendix A. Binary coded elitist non-dominated
orting genetic algorithm, NSGA-II (Deb, 2001; Deb
t al., 2002) with the jumping gene operators, JG
Kasat & Gupta, 2003) and aJG (Bhat et al., 2005)

1. Generate box,P, of Np binary-coded parent chrom
somes (see flowchart inFig. A1), using a sequenc
of random numbers (e.g., a chromosome represe
two decision variables, each represented by five bin
could be 11010 10110). Map each chromosome into
of real values of the decision variables. Use the m
equations to compute the values of all the objective f
tions (for each chromosome).

2. Classify these chromosomes into fronts based on
domination (Deb, 2001) as follows:
(a) create new (empty) box,P′, of size,Np;
(b) transfer theith chromosome fromP to P′, starting

with the first;
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(a) rearrange all chromosomes in front,j, in ascending
order of the values of any one of their fitness func-
tions,Fk;

(b) find the largest cuboid (rectangle for two fitness
functions) enclosingi, that just touches its nearest
neighbors in the F-space;

(c) Ii,dist ≡ 1/2 (sum of all sides of this cuboid);
(d) assign large values ofIi,dist to solutions at the bound-

aries to make them important.
4. Copy the better of theNp chromosomes ofP′ in a new

box,P′′ (‘better’ parents). Use:
(a) select any pair,i andj, from P′ (randomly, irrespec-

tive of fronts);
(b) identify the better of these two chromosomes.i is

better thanj if (for minimization of all fitness func-
tions):

Ii,rank �= Ij,rank : Ii,rank < Ij,rank,

Ii,rank = Ij,rank : Ii,dist > Ij,dist;

(c) copy (without removing fromP′) the better chromo-
some in a new box,P′′;

(d) repeat tillP′′ hasNp members;
(e) copy all ofP′′ in a new box,D, of sizeNp;

Not all of P′ need be inP′′ or D.
5. Carry out crossover and mutation (Deb, 1995) of chro-
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(d) replace the set of binaries between these two loca-
tions by a new set of binaries (use random numbers).
For example, we may get 110|00 11|110

7. Copy allNp members ofP′′ and all theNp members of
D into box PD (elitism). Box PD has 2Np chromosomes.

8. Reclassify these 2Np chromosomes into fronts (box PD′)
usingonly non-domination (see Step 2 above).

9. Take the bestNp from box PD′ and put into boxP′′′.
10. This completes one generation. Stop if criteria are met.
11. CopyP′′′ into starting box,P. Go to Step 2 above.

Appendix B. Model equations

The volumetric flux, Jw (Lonsdale et al., 1965;
Rautenbach, 1986; Sherwood, Brian, & Fischer, 1967;
Soltanieh & Gill, 1981) of the solvent is represented phe-
nomenologically by

Jw = a(�P − �π) (A2.1)

while the mass flux,Js, of the solute is given by

Js = b(Cwall − Cp) (A2.2)

In the presence of concentration polarization (Sherwood
et al., 1967), Jw, at steady state, is also given by

J

W

�

t e. We
c

J

C
o

J

a

C

T

R

E

S

S

mosomes inD. This gives a box ofNp daughter chromo
somes:
(a) Crossover: randomly select two chromosom

and a random crossover site (say, after the
position) and exchange the binaries as shown be

(b) Mutation: for each binary ineach chromosome, gen
erate a random number and check (usingpm) if it
needs to be changed by this operator. If yes, swit
it over (from 0 to 1 or vice versa).

6. Do JG or aJG operation: select a chromosome (se
tially) from D, say 110|10 10|110.

Check if JG/aJG operation is needed, using a ran
number andpJG. If yes:
(a) generate a random number between 0 and 1;
(b) multiply this bylchrom, the total number of binarie

in the chromosome. Round off to convert into
integer. This represents the position of the begin
of a transposon (say, at the end of the third bina
the above chromosome);

(c) JG or aJG:
• JG: generate another similar random number

identify a second location (end of the JG) in
selected chromosome (say, the after the sev
binary);

• aJG: fix the second end of the JG using the s
ified string length,laJG (say laJG= 4; so place
marker at the end of the3 + 4 = seventh binary) o
the jumping gene (Bhat et al., 2005);
w = ks ln
Cwall − Cp

Cb − Cp
(A2.3)

e use

π = bπ(Cwall − Cp) (A2.4)

o estimate the osmotic pressure across the membran
an also write the solute flux as

s = JwCp (A2.5)

ombining Eqs. (A2.1)–(A2.3) (eliminating Cwall), we
btain, finally (Rautenbach, 1986):

w = a

[
�P − bπ

(
Cb − bCb exp(Jw/ks)

Jw + b exp(Jw/ks)

)
exp(Jw/ks)

]

(A2.6)

nd

p = bCb

b + Jw exp(−Jw/ks)
(A2.7)

he observed rejection is given by

= 1 − Cp

Cb
(A2.8)

stimation of mass transfer coefficient, ks

piral wound module (Shock & Miquel, 1987)

h = 0.065Re0.865Sc0.25 (A2.9)
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where, Sh = ksdh

DAB
, Re = dhv

ν
and Sc = ν

DAB

The hydraulic diameter of a spiral wound module depends on
the channel height, the specific surface area of the spacer and
the void fraction. Details for various membranes are given by
Shock and Miquel (1987).

For brackish water, the kinematic viscosity,ν, can be
estimated from the data given bySourirajan (1970)for the
NaCl–H2O system at 25◦C:

ν = 0.0032+ 3.0 × 10−6C + 4.0 × 10−9C2 (A2.10)

The mass diffusivity,DAB (NaCl–H2O; T = 25◦C), is esti-
mated as 5.5× 10−6 m2 h−1 at C = 3.1 kg m−3 (Sourirajan,
1970).

For seawater,DAB, µ andρ (Sekino, 1994; Taniguchi &
Kimura, 2005; Taniguchi et al., 2001) can be estimated from
the following equations:

DAB =6.725× 10−6 exp

(
0.1546× 10−3C − 2513

273.15+ T

)

(A2.11)

µ = 1.234× 10−6 exp

(
0.00212C − 1965

273.15+ T

)

(A2.12)
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Therefore, the osmotic coefficient,bπ, can be obtained as

bπ = π

C
(A2.18)

B.3. Estimation of the cost

The cost of production of desalinated water is given by
the following equation (Maskan et al., 2000):

Cost= CmemA + CmainA + Cpump

(
Qw�P

Wbaseη

)n

+CeleQw�P

η
(A2.19)

Substituting the appropriate cost coefficients andη = 0.6, one
obtains (Maskan et al., 2000; Perry et al., 1997)

Cost= 1.946× 10−3A + 3.57× 10−3A

+ 0.0943

(
Qw �P

1611.36

)0.67

+ 2.315× 10−3Qw �P

(A2.20)

The first and third terms on the right hand side of Eq.(A2.20)
are not used in evaluating the ‘Cost’ for the operating-stage
optimization Problem 1, since they represent ‘sunken’ capital
t
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D and
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G

nd

= 498.4m +
√

248000m2 + 752.4mC (A2.13)

here, m = 1.0069− 2.757× 10−4T (A2.14)

.1. Tubular module (Wiley et al., 1985)

For laminar flow, i.e., forRe ≤ 2100 in a circular tube, th
eveque relationship (Perry et al., 1997):

h = 1.62

(
Re Sc

d

l

)0.33

(A2.15)

nd for turbulent flow, i.e., forRe ≥ 2100 (Perry et al., 1997
iley et al., 1985):

h = 0.023Re0.8 Sc0.33 for Sc < 1,

h = 0.023Re0.875Sc0.25 for 1 ≤ Sc ≤ 1000,

h = 0.0096Re0.91Sc0.35 for Sc > 1000 (A2.16

.2. Estimation of the osmotic coefficient (Sourirajan,
970)

The osmotic pressure,π, is obtained from the data giv
ySourirajan (1970)for the NaCl–H2O system at 25◦C (con-
entration range: 0–49.95 kg m−3) and is correlated as:

= 0.7949C − 0.0021C2+ 7.0 × 10−5C3 − 6.0 × 10−7C4

(A2.17)
hat is already invested in an existing unit.
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